Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Parasitol ; 51(8): 667-683, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33716019

RESUMEN

When subjected to molecular study, species of digeneans believed to be cosmopolitan are usually found to consist of complexes of species with narrower distributions. We present molecular and morphological evidence of transcontinental distributions in two species of Apharyngostrigea Ciurea, 1924, based on samples from Africa and the Americas. Sequences of cytochrome c oxidase I and, in some samples, internal transcribed spacer, revealed Apharyngostrigea pipientis (Faust, 1918) in Tanzania (first known African record), Argentina, Brazil, USA and Canada. Sequences from A. pipientis also match previously published sequences identified as Apharyngostrigea cornu (Zeder, 1800) originating in Mexico. Hosts of A. pipientis surveyed include definitive hosts from the Afrotropic, Neotropic and Nearctic, as well as first and second intermediate hosts from the Americas, including the type host and type region. In addition, metacercariae of A. pipientis were obtained from experimentally infected Poecilia reticulata, the first known record of this parasite in a non-amphibian second intermediate host. Variation in cytochrome c oxidase I haplotypes in A. pipientis is consistent with a long established, wide-ranging species with moderate genetic structure among Nearctic, Neotropic and Afrotropic regions. We attribute this to natural dispersal by birds and find no evidence of anthropogenic introductions of exotic host species. Sequences of CO1 and ITS from adult Apharyngostrigea simplex (Johnston, 1904) from Egretta thula in Argentina matched published data from cercariae from Biomphalaria straminea from Brazil and metacercariae from Cnesterodon decemmaculatus in Argentina, consistent with previous morphological and life-cycle studies reporting this parasite-originally described in Australia-in South America. Analyses of the mitochondrial genome and rDNA operon from A. pipientis support prior phylogenies based on shorter markers showing the Strigeidae Railliet, 1919 to be polyphyletic.


Asunto(s)
Trematodos , Infecciones por Trematodos , Animales , Brasil , Genómica , Estadios del Ciclo de Vida , Filogenia , Trematodos/genética , Infecciones por Trematodos/veterinaria
2.
Parasit Vectors ; 13(1): 418, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795373

RESUMEN

BACKGROUND: The Lake Victoria basin is one of the most persistent hotspots of schistosomiasis in Africa, the intestinal form of the disease being studied more often than the urogenital form. Most schistosomiasis studies have been directed to Schistosoma mansoni and their corresponding intermediate snail hosts of the genus Biomphalaria, while neglecting S. haematobium and their intermediate snail hosts of the genus Bulinus. In the present study, we used DNA sequences from part of the cytochrome c oxidase subunit 1 (cox1) gene and the internal transcribed spacer 2 (ITS2) region to investigate Bulinus populations obtained from a longitudinal survey in Lake Victoria and neighbouring systems during 2010-2019. METHODS: Sequences were obtained to (i) determine specimen identities, diversity and phylogenetic positions, (ii) reconstruct phylogeographical affinities, and (iii) determine the population structure to discuss the results and their implications for the transmission and epidemiology of urogenital schistosomiasis in Lake Victoria. RESULTS: Phylogenies, species delimitation methods (SDMs) and statistical parsimony networks revealed the presence of two main groups of Bulinus species occurring in Lake Victoria; B. truncatus/B. tropicus complex with three species (B. truncatus, B. tropicus and Bulinus sp. 1), dominating the lake proper, and a B. africanus group, prevalent in banks and marshes. Although a total of 47 cox1 haplotypes, were detected within and outside Lake Victoria, there was limited haplotype sharing (only Haplotype 6 was shared between populations from Lake Victoria open waters and neighbouring aquatic systems) - an indication that haplotypes are specific to habitats. CONCLUSIONS: The Bulinus fauna of Lake Victoria consists of at least B. truncatus, B. tropicus, Bulinus sp. 1 (B. trigonus?) and B. ugandae. The occurrence and wide distribution of Bulinus species in Lake Victoria potentially implies the occurrence of urogenital schistosomiasis in communities living along the shores and on islands of the lake who depend solely on the lake for their livelihood. More in-depth studies are needed to obtain a better picture of the extent of the disease in the Lake Victoria basin.


Asunto(s)
Bulinus , Esquistosomiasis Urinaria/transmisión , África/epidemiología , Animales , Bulinus/clasificación , Bulinus/genética , Bulinus/parasitología , ADN Espaciador Ribosómico/genética , Reservorios de Enfermedades/parasitología , Vectores de Enfermedades , Complejo IV de Transporte de Electrones/genética , Lagos/parasitología , Filogenia , Filogeografía , Caracoles
3.
Parasit Vectors ; 12(1): 573, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801595

RESUMEN

BACKGROUND: Snails such as Galba truncatula are hosts for trematode flukes causing fascioliasis, a zoonosis that is a major public health problem. Galba truncatula has recently been shown to be a cryptic species complex. African populations of Galba spp. are not yet studied using molecular assessments and is imperative to do so and reconstruct the centre of origin of Galba and to understand when and by what means it may have colonized the highlands of Africa and to what extent humans might have been involved in that process. METHODS: Samples from all known sub-ranges throughout Africa and new samples from Europe and Asia were obtained. We used a combination of two mitochondrial (cox1 and 16S) and one nuclear (ITS2) markers and phylogenetic, divergence time estimates and phylogeographical methods to determine the identity and biogeographical affinities. We also reconstructed the colonization history including the likely mode of dispersal and tested for the presence of cryptic Galba species in Africa. RESULTS: Galba truncatula is restricted to the Palaearctic region of the continent, namely Morocco. All sub-Saharan populations proved to be a distinct species according to the phylogenetic analyses and genetic distance. We propose to use the existing name Galba mweruensis (Connolly, 1929) for this species which is morphologically indistinguishable from the other two species hitherto known to occur in northern Africa, i.e. G. truncatula and G. schirazensis. Sub-tropical Africa has been colonized only once in either the Pliocene and possibly Miocene. Diversification within G. mweruensis is dated to the Plio-Pleistocene and thus human-mediated dispersal can be ruled out for the initial colonization of the isolated mountain ranges. There are potentially even more cryptic species in high altitude areas of Africa as outlined by the distinctness of the population found at the top of Mt. Elgon, Uganda. CONCLUSIONS: From a novel genetic inspection of available African material, a hitherto neglected distinct species, G. mweruensis, now appears a major host of F. hepatica throughout sub-Saharan Africa. A closer examination of trematode parasites hosted by this species is needed in order to understand transmission patterns in highlands throughout eastern and southern Africa. We encourage future studies to inspect other high altitudes areas in Africa in light of parasites of either veterinary or medical importance.


Asunto(s)
Fasciola hepatica , Filogenia , Caracoles/genética , Caracoles/parasitología , África del Norte , Animales , Ciclooxigenasa 1/genética , Filogeografía , ARN Ribosómico 16S/genética , Caracoles/clasificación
4.
Infect Genet Evol ; 17: 62-70, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23542455

RESUMEN

Diplostomid trematodes comprise a large and diverse group of widespread digeneans whose larval stages are important parasitic pathogens that may exert serious impacts in wild and cultured freshwater fish. However, our understanding of their diversity remains incomplete especially in the tropics. Our study is the first application of a DNA-based approach to diplostomid diversity in the African continent by generating a database linking sequences for the mitochondrial cytochrome c oxidase subunit 1 (cox1) barcode region and ITS1-5.8S-ITS2 rRNA gene cluster for brain-infecting diplostomid metacercariae from the catfish Clarias gariepinus. Analyses of newly-generated partial cox1 sequences for 34 larval isolates of Tylodelphys spp. from Tanzania and Diplostomum spp. from Tanzania and Nigeria revealed three strongly supported reciprocally monophyletic lineages of Tylodelphys spp. and one of an unknown species of Diplostomum. The average intraspecific divergence for the cox1 sequences for each recognised novel lineage was distinctly lower compared with interspecific divergence (0.46-0.75% vs 11.7-14.8%). The phylogenetic hypotheses estimated from Bayesian inference and maximum likelihood analyses of ITS1-5.8S-ITS2 data exhibited congruent strong support for the cox1-derived lineages. Our study thus provides molecular-based evidence for the existence of three distinct brain-infecting species co-occurring in natural populations of C. gariepinus. Based on phylogenetic analyses, we re-allocated Diplostomum mashonenseBeverley-Burton (1963) to the genus Tylodelphys as a new combination. We also generated cox1 and ITS1-5.8S-ITS2 sequences for an unknown species of Diplostomum from another African fish host, Synodontis nigrita.


Asunto(s)
Encéfalo/parasitología , Bagres/parasitología , Trematodos/clasificación , Trematodos/genética , Animales , ADN Espaciador Ribosómico/genética , Complejo IV de Transporte de Electrones/genética , Filogenia , Tanzanía , Trematodos/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...